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What sets Basetwo apart from existing Digital Twin solutions?

Basetwo is the first end-to-end                       
platform for the pharmaceutical industry.
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TwinOps is focused on the lifecycle of taking digital twins from design to production, and then providing
the infrastructure to maintain and monitor them once operationalized. It is inherently collaborative, often
comprising process modellers, data scientists, site engineers, and IT.



Today, engineers are over-reliant on disconnected workflows to improve production

performance. Disconnected digital workflows limit production efficiency and

scalability while introducing business risk. On the other hand, productionizing digital

twins in an industrial, regulated environment is difficult. This ebook will introduce

readers to Basetwo's unique digital twin solutions alongside their engagement

models. In the latter part, we will dive into 5 use cases of how Basetwo supports the

pharmaceutical and biotech industry in various ways.

disconnected 

limit production efficiency

Introduction 

Inaccessible to process
engineers; difficult to
operationalize scripts
across sites Limited collaboration

and knowledge transfer
across teams and sites 

Locked proprietary
software doesn't
integrate across tech
stack; unable to scale
across multiple use cases 
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Learn how your
process would
perform under new
conditions

Discover the best
way to operate a
process

Find the best time to
maintain or replace
an asset

What is TwinOps

With Basetwo, engineers can reliably build, validate, and deploy digital
twins of their processes

TwinOps is a software engineering practice focused on the lifecycle of taking digital twins
from design to production, and then providing the infrastructure to maintain and monitor
them once operationalized.
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Ingest
Input and clean data
from various sources

Design and deploy digital twin for
any process or unit operation 

Stimulate Optimize

TwinOps is inherently collaborative, often comprising process modellers,
data scientists, site engineers, and IT.
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Importance of biological yield

Biological yield is a key indicator of upstream fermentation process performance that
directly contributes to the productivity of each manufacturing run as it determines the
amount of product available for downstream processing.

Complications when trying to improve biological yield

Biological yield itself is a complex function of various critical process parameters (CPPs),
including measured variables, such as the concentration of dissolved gases, substrates,
temperature, pH, and unmeasured variables, such as bioreactor fluid dynamics. 

The interaction between these CPPs is driven by convoluted underlying cellular and
process dynamics, wherein several variables may interact in a synergistic or non-linear
manner that is difficult to characterize through conventional process analytical techniques
or simple mathematical models built in Excel or MATLAB.

The challenge manufacturers face

Process analysts and engineers who deeply understand underlying process dynamics are
a valuable but expensive and limited resource who are often unable to provide feedback
for all batches in real-time, around the clock. Further, these experts may not have access to
the tools that allow them to diagnose and tackle manufacturing issues due to the noisy
nature of the data and lack of valuable on-line measurements for key variables.

Therefore, model-based optimization of biological yield is currently either very
complex or costly and therefore not worthwhile to pursue despite the potential

gains in biological yield available.

01

USE CASE 1  

Optimization of monoclonal antibody
titers in GS-NS0 bioreactors

Optimizing antibody titers in mammalian cGMP bioreactors

The Challenge  



The Basetwo Solution

Development of a cellular model

Inputs into the model included results from nutrient and metabolite
analysis of GS-NS0 cells and supplemented by quantified cell
counts and antibody concentration. A modified version of the
Arrhenius equation (1) was created to account for the lag phase
using the principles of Monod kinetics (2). These equations were
leveraged to create an early cellular model wherein mAb
concentration can be isolated and maximized (Figure 1).
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Leveraging an advanced cellular model to dynamically optimize titer

Model calibration and validation

Outputs of the early cellular model were compared to data from
several fed-batch bioreactors to refine the weight of variables
within the model through dynamic optimization. This formulation
aims to maximize mAb concentration as a function of the
established process model above combined with constraints for
feed and total media volume and various initial conditions for cell
density and media composition to reflect a variety of industrial
conditions. The final validated model required half of the
experimental variables to describe antibody production near
perfectly (Figure 2). Key variables included coefficients for glucose,
lactate, and glutamate metabolism and corresponding
concentrations of these metabolites.

Model-based optimization of antibody titer

Maximization of antibody titer was achieved using model-based predictions to determine an optimal
feeding schedule at various initial concentrations of antibody common to a fed-batch bioreactor.
Relative to conventional optimization, model-based optimization of the feeding schedule achieved a
30% increase in final mAb concentration.
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03 Business Impact 

 Increased antibody titer and reduced process variability

The advanced cellular model presented in this use case is able to accurately predict and
improve mAb production using a smaller set of commonly measured variables relative to
traditional feed optimization approaches, reducing process variability and improving
productivity

Primary Reference: Kiparissides et al. 2015. On the model-based optimization of secreting mammalian cell (GS-NS0) cultures. Biotechnology & Bioengineering, 112(3):536-48.



Importance of resin lifespans

Protein A resins are crucial to mAb manufacturing and are nearly 50% more expensive
than non-protein-based stationary phases. Manufacturing-scale columns are in the order
of one million dollars per packing, and resin aging results in performance loss and limits
the lifetime around 50-100 cycles, incurring significant manufacturing costs. 

The complexities of maximizing resin lifespan 

Optimization of Protein A resin lifespan is typically approached in a conservative manner
by adding a safety margin to the number of cycles a column can process. Fixing the
number of cycles at manufacturing scale can bear considerable risks, due to lot-to-lot
variability, differences in feed material, column storage, packing quality, or other
unforeseen events that can influence resin lifespan, often pushing the column lifespan
below the safety buffer established by manufacturers.

The challenge manufacturers face

Resin aging is a complex phenomenon and is difficult to consistent and reliably predict
without forsaking extended use of the column due to manufacturing risk associated with
poor resin performance. Process engineers may not have access to the tools or models
that allow them to diagnose and tackle resin lifespan issues due to the noisy nature of the
data and lack of on-line or frequent measurements for key variables, such as dynamic
binding capacity.
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Therefore, maximization of Protein A resin lifespan is currently very complex
and difficult to pursue despite the potential gains in process performance

available.

01

USE CASE 2  

Model-based optimization of Protein
A resin service life

Optimizing antibody titers in mammalian cGMP bioreactors

The Challenge  



Development of hybrid and on-line model

Using the post-processed data, a hybrid model (1) is developed
using a lumped kinetic model with column aging parameters (2)
and calibrated according to experimental breakthrough curves. A
separate model was also developed using the Kalman filter
approach which translates on-line UV signals into mAb
concentrations that are normally only available offline. Both models
were fit to several column lifetime experimental datasets under
various commercial conditions that affected aging behaviors.

The Basetwo Solution

Generation and processing of experimental data

Resin lifetime cycling studies were performed on Contichrom CUBE
Combined and ÄKTA Avant 150 systems consisting of equilibration,
loading, three wash steps, elution, and two cleaning in place and
neutralization cycles. Elution fractions and breakthrough curves were
measured for the desired mAb alongside various impurities.
Experimental data were cleaned and processed according to the
workflow in Figure 1 to allow for input of data into chromatographic
models.
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Leveraging a process model to track and simulate resin aging

Model performance and predictive ability 

Maximization of antibody titer was achieved using model-based predictions to determine an optimal
feeding schedule at various initial concentrations of antibody common to a fed-batch bioreactor.
Relative to conventional optimization, model-based optimization of the feeding schedule achieved a
30% increase in final mAb concentration.
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03 Business Impact 

Predictive resin maintenance and better resin ROI

The advanced hybrid models presented in this use case are able to accurately predict
resin performance over their entire lifespan and even enable on-line maintenance using
UV measurements. These models are also able to forecast resin performance, allowing
for predictable maintenance scheduling and better overall return on investment for each
resin used.

Primary Reference: Feidl et al. 2020. Model based strategies towards protein A resin lifetime optimization and supervision. J Chromatography A, 1625, p.461261.



Currently, providing recombinant adeno-associated virus (AAV) supply for clinical trials and
commercial demand remains challenging due to a combination of high required dosing and
relatively low process efficiency. One of the most widely used protocols to produce AAVs is
transient transfection of HEK293 cells. Improvement of AAV yields can significantly improve clinical
supply, reducing a key bottleneck when conducting clinical trials leveraging AAV therapeutics.
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01

USE CASE 3  

AI in Cell & Gene Therapy 

Background

Optimization of recombinant adeno-
associated virus (AAV) development in
HEK293 cells

Overview of Adeno-associated virus (AAV) manufacturing workflow

The Challenge  

AAV yield is a complex function of various process parameters that are poorly understood despite
decades of research. Only 5% to 30% of AAV capsids produced by cells contain the desired
therapeutic element, creating a significant downstream purification burden.

The interaction between AAV manufacturing parameters is driven by convoluted underlying cellular
and capsid dynamics, wherein several variables may interact in a non-linear manner difficult to
characterize through conventional process analytical techniques or simple mathematical models
built in Excel or MATLAB. This makes it difficult to improve production performance or to alleviate
process bottlenecks.

Industry
Pharmaceuticals AAV Development

Process Objective
Process Improvement

Model
Mechanistic

Plasmid
Development

Cell
Expansion

Plasmid
Transfection

Viral Vector
Production

Purification &
Formulation
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A mechanistic model was leveraged to virtually simulate the AAV manufacturing processes and
identify new process conditions that can overcome current manufacturing bottlenecks. 

A mathematical mass balance process model was developed to describe the kinetic behaviour of
transfection and other AAV development steps. The model contains two parts that capture the
trafficking of plasmid to the nucleus (Figure 1) and replication (Figure 2).

Digital Twin Development03

In total, 14 kinetic parameters were leveraged in the model which account for gene delivery, viral
production, protein synthesis, protein degradation, protein binding, packaging, and secretion (Table
1). The definitions of these parameters are described in the appendix.

Once kinetic parameters were established, a family of 18 ordinary differential equations (ODE)
describing the mass balance of key process processes were developed. An example ODE
describing the dynamics of the endosomal vesicle complex is below:
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04 Digital Twin Results

The kinetic parameters were determined using process data collected from historical transfections.
When data to inform any parameters were limited or experimentally infeasible, estimates were
obtained from literature for related processes and validated with small-scale experiments using
maximum likelihood estimation when possible. If no information was available for a given parameter,
structural analysis and prior parameter knowledge was utilized to make parameter assumptions.

ODEs were solved by a stiff ODE solver. Briefly, a multi-start approach with 1,000 initial conditions
and an interior-point algorithm was used to identify global minima by minimizing the objective
function, defined as the error between experimental and simulated results.

Mechanistic model simulations showed good agreement with experimental data (Figure 3).
Simulation results show total plasmid uptake peaked 20h post-transfection and plasmid
concentration in the nucleus peaked at 45h. Of note, only 5% of the initial plasmid added to the cell
culture is transfected into the cells, and only 0.6% of the total plasmid input is eventually trafficked
into the nucleus, revealing important process bottlenecks.



This allows researchers to focus efforts to improve production performance and accelerate
process development of AAVs crucial for clinical supply for gene therapy manufacturers.

The biological mechanism of AAV synthesis captured by the digital twin is largely unchanged for
other transfection methods, including across cell lines, meaning the digital twin can easily be
adapted to other production methods, improving AAV development across the organization.

Overall, leveraging the digital twin unlocks digital experimentation and hypothesis testing to help
stakeholders evaluate and reveal process bottlenecks that can be investigated and addressed to
improve process development and improve final AAV yield and quality.
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05 Business Impact 

The digital twin revealed AAV production was significantly influenced by:

1.Plasmid trafficking

2.Rep proteins that repress gene expression

3.DNA replication during first 24 hours post-transfection

Advanced process models available through Basetwo accurately predict process
dynamics in AAV development, facilitating identification of process bottlenecks,
accelerating process development, and advance gene-therapy manufacturing.

Primary Reference: Nguyen et al. Mechanistic model for production of recombinant adeno-associated virus via triple transfection of HEK293 cells. Mol Ther Methods Clin Dev. 2021.



Crystallization represents the most widely used method to separate API from its mixture and is the
major operation of API manufacturing where the control strategies of API synthesis converge.
Successful crystallization needs to meet a variety of purity criteria and ensure appropriate
physicochemical critical quality attributes (e.g. crystal form, particle size distribution) are optimal as
to not affect downstream processing and the final composition of drug formulations.
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01

USE CASE 4  

Digital Twins in API Development

Background

Characterization and prediction of API
crystallization scale-up leveraging a
population balance model 

Overview of factors influencing crystallization performance

The Challenge  

Particle size is considered an important powder property that influences downstream performance.
However, particle size and process parameters such as crystallizer size, baffle type, seed load,
temperature profile, antisolvent addition rates, and agitation rate, can all impact the final product
particle size.

The interaction between particle size is driven by underlying thermodynamics, wherein several
variables may interact in a non-linear manner difficult to characterize through conventional process
analytical techniques or simple mathematical models built in Excel or MATLAB. This makes it
difficult to predict or understand particle size when scaling up or down or under novel process
conditions

Industry
Pharmaceuticals

Objective Model
Mechanistic

Crystal Size Nucleation

API Crystallization
Process

Process Characterization

Solubility Mixing Process 
Scale
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A population balance model was created with the goal of describing the kinetic behaviour the
crystallization processes, including supersaturation, nucleation, and other crystallization steps. The
structure of the kinetic model was informed by experiments conducted on lab scale (10 g)
crystallization runs designed to evaluate the influence of various process parameters on particle size
distribution, crystal growth, and nucleation during crystallization.

The general population balance equation adapted from literature takes into account inlet and outlet
streams and can be simplified to a mass balance model for batch crystallization:

Digital Twin Development03

Where C is the API concentration in solution, k(v) is the volumetric shape factor, ρ(c) is the true
density of the crystals, and Q is the flow rate of the antisolvent. Values were informed by simulated
single-crystal structure and literature when they could not be estimated from experiments and
simulations.

Solubility, particle size distribution, and crystallization parameters were estimated from lab-scale
experiments and simulated experiments at plant scale (35 kg) using a variety of reactor capacities,
impeller types, diameters, and speeds. 
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04 Digital Twin Results

Solubility data for the API were collected from HPLC and compared to modeled estimates as a
function of temperature and antisolvent. Predicted solubility showed good agreement with
measured data. After solubility was validated, crystallization was then modelled using secondary
nucleation kinetic models considering particle-impeller collisions since crystallization runs were
seeded.

Overall, model predictions were in good alignment with both lab-scale (Figure 1) and plant-scale
(Figure 2) batches. Several process parameters were observed to have an influence on particle size
distribution, including supersaturation, impeller pumping number, impeller power number, and
energy dissipation rate and were well captured in the final model for almost all experiments
performed.
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05 Business Impact 

The digital twin was able to predict particle size from crystallization processes conducted under
different conditions, different scales, and in different reactors with different impeller types. Process
modelling indicated that secondary nucleation strongly influences the particle size in the API
crystallization process. Agitator type and speed were found to have a strong influence on the
resulting particle size due to their influence on secondary nucleation, while parameters that
influence growth, such as seed load, were observed to have more minor effect on particle size.

Overall, leveraging the digital twin unlocks digital experimentation and hypothesis testing to help
stakeholders evaluate and reveal process bottlenecks that can be investigated and addressed to
improve process development and improve final API yield and quality. This model helps to provide a
more robust particle size control strategy by employing fundamental crystallization kinetics to
predict particle size.

Advanced process models available through Basetwo are able to accurately predict
process dynamics in API development, facilitating identification of process

bottlenecks, accelerating process development, and advancing API manufacturing.

Integrate across
AAV data sources

Clean ingested
data for analysis

Build and
validate AAV
process models

Deploy and
monitor AAV
models

Improve AAV
production
across teams

Primary Reference: Rosenbaum et al. Population Balance Modeling To Predict Particle Size Distribution upon Scale-Up of a Combined Antisolvent and Cooling Crystallization of an Active
Pharmaceutical Ingredient. Org. Process Res. Dev. 2019, 23, 2666−2677.



Importance of cell culture productivity

Cell culture productivity often refers to product titer as a function of viable cell count and is a
complex function of several key process parameters such as pH, dissolved gasses, and
metabolite concentration, making productivity difficult to measure in isolation. Lactate
concentration in particular directly contributes to the productivity of each manufacturing run as
it impedes protein manufacturing at higher levels, reducing the amount of product available for
downstream processing. 

The complexities of maximizing cell culture productivity

The interaction between the critical process parameters that determine the productivity of a
given batch is driven by convoluted underlying cellular and process dynamics, wherein several
variables may interact in a synergistic or non-linear manner that is difficult to characterize
through conventional analytical approaches or simple mathematical models built in Excel or
MATLAB. Introducing metabolic shifts to optimize productivity (i.e., controlling lactate
production or inducing lactate consumption) has been achieved through control strategies such
as dynamic feeding to control glucose levels.  

The challenge manufacturers face

Process analysts and engineers who deeply understand underlying process dynamics are a
valuable but expensive and limited resource who are often unable to provide feedback for all
batches in real-time, around the clock. Further, these experts may not have access to the tools
that allow them to diagnose and tackle manufacturing issues due to the noisy nature of the
data and lack of valuable on-line measurements for key variables.
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Therefore, model-based optimization of cell culture productivity is currently
either very complex or costly and therefore not worthwhile to pursue despite

the potential gains available.

01

USE CASE 5  

Optimization of bioreactor titers
through virtual “what-if” analysis 

Optimizing cell culture productivity in bioreactors 

The Challenge  



The Basetwo Solution

Generation and processing of experimental data

Data from 243 production-scale bioreactor runs producing a
recombinant IgG molecule using a single CHO cell line were used
for analyses. Three seed batch processes were included (80L,
400L, and 2000L), as well as a 12,000 L fed-batch bioreactor.
Experimental data containing approximately 30 parameters at both
inoculum and production scales were cleaned and processed
according to the workflow in Figure 1, reproducible on the Basetwo
platform.

Page 19

Using a model to reveal cellular patterns and virtually experiment

Development of vector regression model

Using the post-processed data and available parameters, a support
vector regression (SVR) algorithm aimed at predicting final titer and
lactate production at commercial scale is developed and cross-
validated using data from all scales. Model performance was
assessed according to correlation coefficients and root mean
square error with actual titer. The SVR model was able to
accurately predict antibody titer at commercial scale over a 260-
hour fermentation period (Figure 2).

Application of the model for “what-if” analyses 

Leveraging the validated SVR model, several manufacturing insights were obtained using “what-if”
analyses that varied virtual experimental conditions which were later validated experimentally. For
example, the model revealed that final antibody titer can be accurately predicted from the first 70h
of fermentation time. Relatedly, cells appeared to experience a persistence metabolic shift
dependent on early glucose levels: batches with low glucose consumption had reduced lactate
production and higher final product titers. As a result, corrective measures to suppress glucose
consumption early on in fermentation were shown to increase final product titer.
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03 Business Impact 

Greater process understanding and better bioreactor ROI 

The models presented in this use case are able to accurately predict bioreactor titer at
multiple scales and allow for virtual experimentation to enable resource-free movement
within the design space. This not only enables greater process performance, but also deeper
process understanding by revealing process trends through accurately simulated “what-if”
analyses. 

With an accessible web-based interface, Basetwo allows users to:

Integrate with multiple 
data sources and
in-house spreadsheets

Clean ingested 
data for analysis

Easily build and 
validate advanced ML 
and process models

Deploy and monitor
models to enhance 
manufacturing SOPs

Collaborate with 
performance reports 
across departments

Primary Reference: Le et al. 2012. Multivariate analysis of cell culture bioprocess data—lactate consumption as process indicator. Journal of biotechnology, 162(2-3), pp.210-223.
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Appendix 

Nguyen et al. (2021)

Appendix 1 - Full List of Model Parameters 

Primary Reference: Rosenbaum et al. Population Balance Modeling To Predict Particle Size Distribution upon Scale-Up of a Combined Antisolvent and Cooling Crystallization of an Active
Pharmaceutical Ingredient. Org. Process Res. Dev. 2019, 23, 2666−2677.

Appendix 2 - Additional Crystallization Information 
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